If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+3x-300=0
a = 6; b = 3; c = -300;
Δ = b2-4ac
Δ = 32-4·6·(-300)
Δ = 7209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7209}=\sqrt{81*89}=\sqrt{81}*\sqrt{89}=9\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9\sqrt{89}}{2*6}=\frac{-3-9\sqrt{89}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9\sqrt{89}}{2*6}=\frac{-3+9\sqrt{89}}{12} $
| 6x^2+3x+300=0 | | -19+19d=19+17d | | -19+12n=19+4n+18 | | -6m+6m=-2m+16 | | -18-6b=-5b | | -10n+18=-9n | | 5(2z+4=0 | | k+6=-2k-10-2 | | (x-7)(-2x+10)=0 | | -15r-14=-17r+18 | | -4c-1=-9-3c | | 7w-9=5w+9+2 | | x*(1+1/x)+17=3*(2-x) | | -25=5x+75 | | 7x+(2x-5)=4 | | 22+3x=2+6x | | 8x=-2x+5 | | x^2-4x-16=45 | | -25=5x75 | | 2(2x-3)-2=2(x-2)+8 | | 10u=-7+9u | | -9.2t+2t-6.51=-16.9t-13.3 | | (3x-2)/0,2=(14-x)/0,1 | | 10^y=1/100000000 | | -4c=-6c-10 | | 22+3x=2+8x | | 5b+1=4b+9 | | -8.4+8.3r=9.7r-11.2 | | 170-u=279 | | 2(3x-0,5)=6-(x+8) | | -7(x+3)=-2(x+3)-5× | | 4x-94=158-10x |